Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5610, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453966

RESUMO

Given that ketogenic diets (KDs) are extremely high in dietary fat, we compared different fats in KDs to determine which was the best for cancer prevention. Specifically, we compared a Western and a 15% carbohydrate diet to seven different KDs, containing either Western fats or fats enriched in medium chain fatty acids (MCTs), milk fat (MF), palm oil (PO), olive oil (OO), corn oil (CO) or fish oil (FO) for their ability to reduce nicotine-derived nitrosamine ketone (NNK)-induced lung cancer in mice. While all the KDs tested were more effective at reducing lung nodules than the Western or 15% carbohydrate diet, the FO-KD was most effective at reducing lung nodules. Correlating with this, mice on the FO-KD had low blood glucose and the highest ß-hydroxybutyrate level, lowest liver fatty acid synthase/carnitine palmitoyl-1a ratio and a dramatic increase in fecal Akkermansia. We found no liver damage induced by the FO-KD, while the ratio of total cholesterol/HDL was unchanged on the different diets. We conclude that a FO-KD is superior to KDs enriched in other fats in reducing NNK-induced lung cancer, perhaps by being the most effective at skewing whole-body metabolism from a dependence on glucose to fats as an energy source.


Assuntos
Dieta Cetogênica , Gorduras Insaturadas na Dieta , Neoplasias Pulmonares , Camundongos , Animais , Óleos de Peixe/farmacologia , Óleos de Peixe/metabolismo , Gorduras Insaturadas na Dieta/metabolismo , Óleos de Plantas/farmacologia , Óleos de Plantas/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/prevenção & controle , Gorduras na Dieta/metabolismo , Azeite de Oliva , Dieta , Carboidratos
2.
Clin Cancer Res ; 30(5): 1022-1037, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812652

RESUMO

PURPOSE: Ewing sarcoma is the second most common bone sarcoma in children, with 1 case per 1.5 million in the United States. Although the survival rate of patients diagnosed with localized disease is approximately 70%, this decreases to approximately 30% for patients with metastatic disease and only approximately 10% for treatment-refractory disease, which have not changed for decades. Therefore, new therapeutic strategies are urgently needed for metastatic and refractory Ewing sarcoma. EXPERIMENTAL DESIGN: This study analyzed 19 unique Ewing sarcoma patient- or cell line-derived xenografts (from 14 primary and 5 metastatic specimens) using proteomics to identify surface proteins for potential immunotherapeutic targeting. Plasma membranes were enriched using density gradient ultracentrifugation and compared with a reference standard of 12 immortalized non-Ewing sarcoma cell lines prepared in a similar manner. In parallel, global proteome analysis was carried out on each model to complement the surfaceome data. All models were analyzed by Tandem Mass Tags-based mass spectrometry to quantify identified proteins. RESULTS: The surfaceome and global proteome analyses identified 1,131 and 1,030 annotated surface proteins, respectively. Among surface proteins identified, both approaches identified known Ewing sarcoma-associated proteins, including IL1RAP, CD99, STEAP1, and ADGRG2, and many new cell surface targets, including ENPP1 and CDH11. Robust staining of ENPP1 was demonstrated in Ewing sarcoma tumors compared with other childhood sarcomas and normal tissues. CONCLUSIONS: Our comprehensive proteomic characterization of the Ewing sarcoma surfaceome provides a rich resource of surface-expressed proteins in Ewing sarcoma. This dataset provides the preclinical justification for exploration of targets such as ENPP1 for potential immunotherapeutic application in Ewing sarcoma. See related commentary by Bailey, p. 934.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Sarcoma , Criança , Humanos , Sarcoma de Ewing/genética , Sarcoma de Ewing/terapia , Proteínas de Membrana , Proteoma , Proteômica , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Imunoterapia , Antígenos de Neoplasias , Oxirredutases
3.
Clin Cancer Res ; 29(17): 3541-3553, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279093

RESUMO

PURPOSE: Histone deacetylase (HDAC) inhibition has been shown to induce pharmacologic "BRCAness" in cancer cells with proficient DNA repair activity. This provides a rationale for exploring combination treatments with HDAC and PARP inhibition in cancer types that are insensitive to single-agent PARP inhibitors (PARPi). Here, we report the concept and characterization of a novel bifunctional PARPi (kt-3283) with dual activity toward PARP1/2 and HDAC enzymes in Ewing sarcoma cells. EXPERIMENTAL DESIGN: Inhibition of PARP1/2 and HDAC was measured using PARP1/2, HDAC activity, and PAR formation assays. Cytotoxicity was assessed by IncuCyte live cell imaging, CellTiter-Glo, and spheroid assays. Cell-cycle profiles were determined using propidium iodide staining and flow cytometry. DNA damage was examined by γH2AX expression and comet assay. Inhibition of metastatic potential by kt-3283 was evaluated via ex vivo pulmonary metastasis assay (PuMA). RESULTS: Compared with FDA-approved PARP (olaparib) and HDAC (vorinostat) inhibitors, kt-3283 displayed enhanced cytotoxicity in Ewing sarcoma models. The kt-3283-induced cytotoxicity was associated with strong S and G2-M cell-cycle arrest in nanomolar concentration range and elevated DNA damage as assessed by γH2AX tracking and comet assays. In three-dimensional spheroid models of Ewing sarcoma, kt-3283 showed efficacy in lower concentrations than olaparib and vorinostat, and kt-3283 inhibited colonization of Ewing sarcoma cells in the ex vivo PuMA model. CONCLUSIONS: Our data demonstrate the preclinical justification for studying the benefit of dual PARP and HDAC inhibition in the treatment of Ewing sarcoma in a clinical trial and provides proof-of-concept for a bifunctional single-molecule therapeutic strategy.


Assuntos
Puma , Sarcoma de Ewing , Animais , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Sarcoma de Ewing/patologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Vorinostat/uso terapêutico
4.
Front Immunol ; 14: 1070492, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761762

RESUMO

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) is a type II transmembrane glycoprotein expressed in many tissues. High expression levels of ENPP1 have been observed in many cancer types such as lung cancer, ovarian cancer, and breast cancer. Such overexpression has been associated with poor prognosis in these diseases. Hence, ENPP1 is a potential target for immunotherapy across multiple cancers. Here, we isolated and characterized two high-affinity and specific anti-ENPP1 Fab antibody candidates, 17 and 3G12, from large phage-displayed human Fab libraries. After conversion to IgG1, the binding of both antibodies increased significantly due to avidity effects. Based on these antibodies, we generated antibody-drug conjugates (ADCs), IgG-based bispecific T-cell engagers (IbTEs), and CAR T-cells which all exhibited potent killing of ENPP1-expressing cells. Thus, these various antibody-derived modalities are promising therapeutic candidates for cancers expressing human ENPP1.


Assuntos
Neoplasias da Mama , Imunoconjugados , Humanos , Feminino , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Imunoglobulina G , Pirofosfatases/genética
5.
Carcinogenesis ; 43(2): 115-125, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34958345

RESUMO

We recently showed that a low-carbohydrate (CHO) diet containing soy protein and fish oil dramatically reduces lung nodules in a mouse model of lung cancer when compared to a Western diet. To explore the universality of this finding, we herein compared this low-CHO diet to a Western diet on in preventing breast and prostate cancer using a mouse model that expresses the SV40 large T-antigen specifically in breast epithelia in females and prostate epithelia in males. We found that breast cancer was significantly reduced with this low-CHO diet and this correlated with a reduction in plasma levels of glucose, insulin, IL-6, TNFα and prostaglandin E2 (PGE2). This also corresponded with a reduction in the Ki67 proliferation index within breast tumors. On the other hand, this low-CHO diet did not reduce the incidence of prostate cancer in the male mice. Although it reduced both blood glucose and insulin to the same extent as in the female mice, there was no reduction in plasma IL-6, TNFα or PGE2 levels, or in the Ki67 proliferation index in prostate lesions. Based on immunohistochemistry studies with antibodies to 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), carnitine palmitoyltransferase Ia (CPT1a) and fatty acid synthase (FAS), it is likely that this difference in response of the two cancer types to this low-CHO diet reflects differences in the glucose dependence of breast and prostate cancer, with the former being highly dependent on glucose for energy and the latter being more dependent on fatty acids.


Assuntos
Neoplasias da Mama , Dieta com Restrição de Carboidratos , Óleos de Peixe , Neoplasias da Próstata , Proteínas de Soja , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Dinoprostona , Feminino , Óleos de Peixe/administração & dosagem , Glucose , Insulina , Interleucina-6 , Antígeno Ki-67 , Masculino , Camundongos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/prevenção & controle , Proteínas de Soja/administração & dosagem , Fator de Necrose Tumoral alfa
6.
Cancer Discov ; 11(11): 2884-2903, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34021002

RESUMO

Cancer cells must overcome anoikis (detachment-induced death) to successfully metastasize. Using proteomic screens, we found that distinct oncoproteins upregulate IL1 receptor accessory protein (IL1RAP) to suppress anoikis. IL1RAP is directly induced by oncogenic fusions of Ewing sarcoma, a highly metastatic childhood sarcoma. IL1RAP inactivation triggers anoikis and impedes metastatic dissemination of Ewing sarcoma cells. Mechanistically, IL1RAP binds the cell-surface system Xc - transporter to enhance exogenous cystine uptake, thereby replenishing cysteine and the glutathione antioxidant. Under cystine depletion, IL1RAP induces cystathionine gamma lyase (CTH) to activate the transsulfuration pathway for de novo cysteine synthesis. Therefore, IL1RAP maintains cyst(e)ine and glutathione pools, which are vital for redox homeostasis and anoikis resistance. IL1RAP is minimally expressed in pediatric and adult normal tissues, and human anti-IL1RAP antibodies induce potent antibody-dependent cellular cytotoxicity of Ewing sarcoma cells. Therefore, we define IL1RAP as a new cell-surface target in Ewing sarcoma, which is potentially exploitable for immunotherapy. SIGNIFICANCE: Here, we identify cell-surface protein IL1RAP as a key driver of metastasis in Ewing sarcoma, a highly aggressive childhood sarcoma. Minimal expression in pediatric and adult normal tissues nominates IL1RAP as a promising target for immunotherapy.See related commentary by Yoon and DeNicola, p. 2679.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Anoikis , Proteína Acessória do Receptor de Interleucina-1 , Sarcoma de Ewing , Adulto , Linhagem Celular Tumoral , Criança , Humanos , Proteômica , Receptores de Interleucina-1 , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA